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| ntroduction

Can perceived emotions in music be somehow explained and objectively measured?

This thesis tries to shed some light on this difficult question by proposing a possible approach
for understanding and quantyfying expressive intentions in music playing by extracting meaningful
information from note events. This will be done by looking only at the actual sound, without any
data coming from other tools such as, for example, MIDI devices which, athough useful in several
aspects, can only approximate most of notes characteristics that are relevant to us.

The proposed approach was developed in the context of the European EU-IST Project MEGA
(Multisensory Expressive Gesture Applications) no. 1ST-1999-20410 and the basic ideas were
developed in close collaboration with Dr. Anders Friberg during my stays at the Royal Institute of
Technology (KTH) in Stockholm as a guest researcher during 2001 and 2002.

A strong emphasis is given to real-time applications by developing and using a set of libraries
integrated in the EyeswWeb open platform (a software developed at the Laboratory of Musical
Informatics of the University of Genoa) and the proposed system is tested in several experiments
ranging from expressive intentions recognition to playing style recognition exploiting excerpts
played by well known professionals musicians on different instruments (recorder, violin, piano).
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Part |

How to extract data from music playing



1.1: Expressivity in Music: how can we measure it?

One of the main findings from the research aimed at studying music performance is that the actual
performance of a piece of music never corresponds to the nominal values of the notes printed in the
score.

Moreover the differences between a musical performance of the same piece by a world renowed
soloist and a music student are striking to all of us: one is able to “move’ us deeply, even to move
us to tears or to produce shiversin our back, while the other has amost no effects on us.

A bad, although formally correct, performance like that of a good student is often referred to as
“cold”, but what does this mean exactly? Can we somehow quantify what a “cold” performance is
and compare it objectively to amemorable one?

This problem got a rising interest during the last 15-20 years in an interdisciplinary environment,
made of psychologists, cognitive musicologists and computer engineers, since getting insights on
this matter would have several important aspects. from having a better understanding on how the
human mind perceives and elaborates externa stimuli to the possibility of making new and more
natural computer music systems.

Several studies, such as (Sundberg et al. 1991; Jusliin 2000), concentrated on the study of
sonological parameters involved in expressive performance and our research follows their footsteps.

The basic idea is to determine a set of parameters, that we will refer to as audio cues, that can
somehow give a detailed description of the actual performance so as to quantify all “the small and
large variations in timing, dynamics, timbre and pitch that form the microstructure of a performance
and differentiate it from another performance of the same music” (Palmer 1997, p.118).

Once we can quantify these variations, we may have the key to understand where the “emotional
impact” of the performance lies, as suggested by (Gabrielsson, 1995; Juslin, 1997).



1.2: Choosing and extracting the audio cues

Our approach starts from a very simple idea aready proposed by Neil Todd at the beginning of the
90s (Todd 1992). Thisideais to extract event information from a music input signal simply by low
pass filtering it, exactly like if we were working with a PAM signal.

So, filtering the signal with filters having different cut off frequencies will provide us with profiles
bearing different information: a cut off frequency of about 20Hz will extract the envelope of the
signa (we will call this note profile since it shows fast events) while reducing the cut off at around
1 Hz or less will simply take the energy of the signal (we will call this phrase profile since it shows
an average behaviour that changes slowly).

Then, if we compare the two profiles extracted in this way as shown in figure 1, we can divide the
performance in several events that are detected when the envelope gets higher values than the
energy.
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Fig.1: profiles obtained by low pass filtering a music file with different cut off frequencies (Y
axis. amplitude, X axis. time)

From each of these events we can get insights on what is happening by analysing their shape and
the time that occurs in between them so asto collect valuable information regarding several aspects:

* Tempo (how many events do we have per unit of time? How long are the detected events?)

* Articulation (the ratio between the event duration [DR] and the time that occurs between its onset
and the one of the following event, [10I])

* Dynamics (how loud are the detected events?)

By studying these aspects we will be able to extract several sets of audio cues, suitable for different
experiments (as shown, for example, in Dillon 2001, Friberg et al. 2002), which will be explained in
detail during the following chapters.

Anyway, before proceeding further, we should better understand the meaning of the two profilesin
the case that monophonic or polyphonic music is being played and anal ysed.



1.3 Monophonic and polyphonic music

In the case a monophonic piece is running on, for example on instruments such as flute or violin,
the interpretation of the profiles is quite straightforward: idedly, they should identify each note
being played.

But what happens if the instrument is a piano, playing a complex polyphonic piece? What are we
extracting the cues from?

To understand this, let’s have alook at figures 2 and 3:
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Fig.2: Piano music profile extracted by low pass filtering with a cut off frequency of 20 Hz
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Fig.3: Same piano excerpt asin fig.2, obtained by adding the notes' key velocities of the
corresponding MIDI performance

These figures show the same music excerpt, taken from Scrjabin Etude Op.8 n.11 as used in
(Casazza, Pertino 2003).

Figure 2 shows the extracted envelope after low pass filtering with a cut off filter of 20 Hz while
figure 3 is a profile obtained from the corrisponding MIDI file by summing all the key velocities of
the notes being played at timet:

notes )
y(t) = a KeyVelocity, (1)
i=1



Aswe can see, the two profiles are basically similar since they are showing the same events.

It should be noted that, in this case, the envelope extracted by low pass filtering is not representing
the single notes but full chords or notes overlapping on each other, nonetheless it is till a good
picture, useful to point out the most important musical events on which we will concentrate our
study.

1.4: Audio cuesin EyesWeb: time window and event triggered approaches

To analyse input music performances in real time we developed a set of libraries, whose blocks will
be explained in detail in Appendix A, running on the EyesWeb Open Platform.

EyesWeb is a software platform similar in conception to well known softwares like Max/M SP and
PD and it was developed at the Laboratory of Musical Informatics of the University of Genoa. It
allows the user to build patches made of simple blocks to perform complex operations and
algorithms on audio and video signalsin real time.

It can be freely downloaded from http://infomus.dist.unige.it and an officia introduction can be
found in (Camurri et al. 2000; Camurri et al. 2001).
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Fig. 4: A simple EyesWeb patch for extracting audio cues, time window approach

In figure 4 we have an example patch that extracts a set of cues.

It takes an input stream (it can be from a previously saved file or a live input from a microphone)
and stores the last few seconds of music. This is a time window that is taken for analysis purposes
and, in the upcoming experiments, this time interval was usually set to 4 seconds (unless otherwise
stated) since it seemed a good compromise between the short time needed by the system to react in
real time and the longer time required to understand what is going on from amusical point of view.

The time frame is updated n times per second (by the first block after the input wave reader in fig.4.
In the following ecperiments, n will be set to 5, unless otherwise stated) so as to smoothly move it
across the incoming performance. This overlapping between two following buffers allows an almost
continuous analysis of the incoming signal, useful to appreciate any variations in the characteristics
of the performance under analysis (such as following the development of a crescendo, etc.).

Once the time window isfilled, the signal is squared and then low pass filtered as described earlier.



The filters used need to have zero ripple and, after experimenting with several ones, we decided for
using a first order IIR filter, derived from those commonly used for “exponential averaging” of
numerical series, so as to be able to enhance recent events and also to show long term behaviour.
Itsoutput at timenis.

Yo = A Xn+ AYn1 (2

Where
Ao =1- A
A= - ( %+1)
a —tanép %g

fo : cutoff _ freguency
fs :sampling _ frequency

Then we can feed the two profiles to the cues extractor block.
This block is able to extract severa cues by analysing the signal framed by the time window. In
particular we can get:

» Tempo 1, defined as the average Note Duration (DR), in seconds, of the notes in the buffer

» Tempo 2, defined as the number of events detected in the current buffer

* Articulation, defined as Actual Note Duration / Inter Onset Interval averaged across the events
contained in the buffer

« Standard Deviation of Articulation, computed over the events contained in the buffer

* Mean Sound Level of the events contained in the buffer where Sound Level is the amplitude
measured at the beginning of the event, i.e. at the intersection between the two profiles*

« Standard Deviation of Sound Level of the events contained in the buffer where Sound Level isthe
amplitude measured at the beginning of the event, i.e. at the intersection between the two profiles

* Mean Sound Level Difference, where Sound Level Difference is defined as the difference
between the current and the preceding event. This cue offers useful information for identifying
local crescendo/decrescendo effects.

» Mean Attack Velocity of the events contained in the buffer. Attack Velocity is defined as the
derivative of the note profile at the intersection with the phrase profile

! This value comes from the WAVE filein input and is always a number [x| < 1. If needed, it can be converted in dB by
thissimple formula: y = 4.34 In(x)



It should be noted that not all the cues here listed are as useful in all possible applications as
expected and that some of them are more appropriate than others to face different problems, so in
the experiments explained in the following chapters, we will use only those giving the best results.

The time window approach is particularly suitable for applications where a few seconds delay is
acceptable and for studying problems where we want to conduct a statistical analysis of the data
extracted.

In fact, by taking values referring to an average across numbers extracted in a buffer, we
automatically satisfy the hypothesis of the Central Limit Theorem, regardless of the distribution of
the original samples and hence we can smplify severa assumptions by knowing that the
distributions of the extracted data are Gaussians (for a comprehensive explanation of this
fundamental theorem of probability theory see, for instance, (Papoulis 1991)).

Anyway, there can be applications where having afew seconds of delay can be unacceptable. In this
case the system analysis should be event triggered.

A possible EyesWeb patch is shown in Fig.5. Here, after squaring and low pass filtering, the sound
data are converted to ASCII values and then feeded to the extractor block.
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Fig.5: an EyesWeb patch for extracting cues each time a new event is detected

This approach has a couple of drawbacks, though: first, as long as the system doesn’t detect a new
event, it doesn’'t produce any output (for example, during a pause or avery long note this patch will
be “frozen” while with the other approach we will aways get some output that we could use for
starting other processes). Second, the two-profiles comparison can skip some notes (especidly if the
performer plays with a high legato articulation) and, since here we are interested in every single
event, this can be critical.

Anyway, to correct the latter problem, a further input to the cues extraction block can be added, as
shown in figure 5: it takes in input the midi value of the signal being played (converted from a basic
fundamental frequency extractor block, which works with a zero-crossing algorithm once the signal
has been low pass filtered with a cut off frequency of, for example, 1000 Hz).
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With this added information the cues block can detect musical events also if the musician is playing
all legato.

In this case the extracted cues provided by the cue block are as follows:

» Tempo, defined as the Inter Onset Interval between the current note and the preceeding one

» Onset Sound Level, taken at the intersection of the two profiles or when MIDI value changes

* Max Sound Level, the maximum value detected in the last event

* Articulation, defined as the ratio between the DR of the last event and its Ol with the current one

* Attack Velocity, the derivative of the note profile at the intersection with the phrase profile or
when the MIDI value changes

11



Part |1

Recognition of Expressive Intentions
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2.1: Real Time tracking of expressive intentions on recorder?
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Fig. 6: Excerpt from Arcangelo Corelli (1653 — 1713) Sonata Op.5 n.8

In the first of our experiments we will use the cues to track in real time the expressive intention as
played on recorder by an international level soloist (maestro Lorenzo Cavasanti).

The artist was asked to perform the same music excerpt (shown in figure 6) trying to express a set
of predefined emotional expressiveness. These were choosen from a palette of many possible
expressive intentions (already used in experiments by several researchers, e.g. (Battel, Fimbianti
1998), (Canazza et a. 1998), (De Poli at al.1998)) and, in particular, we selected the following so
asto have an emotional space with afew well defined contrasting moods:

* Neutro (neutral)

* Passionale (passionate)
* Cupo (dark)

* Agitato (restless, hectic)
* Brillante (glittering)

Each expressive intention was recorded three times (using a sample frequency of 22050 Hz, 16 bit
resolution) and then, for analysis purposes, we selected the best one accordingly with the player.

The analysis was carried out with the time window approach (window size: 4 seconds, updated 5
times per second) using the following cues:

* Tempo 2 (in the following table labeled simply as “tempo”)
* Mean of Articulation (“MATrt”)

* Standard Deviation of Articulation (“SDATrt”)

* Mean of Sound Level (“MSnd”)

* Stardard Deviation of Sound Level (“SDSnd")

* Mean of Attack Velocity (“MAttVe”)

2 Preliminary results derived from previous research on this topic were presented in (Camurri, Dillon, Saron, 2000) and
(Dillon, 2001)
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By using these cues, each time frame of the performance is described by a 6 component vector and
this allows us to study the different moods by looking at this new data set and hence to define
mapping strategies so as to give a graphical idea of the perceived emotion.

In other papers, such as (Canazza et al. 1998) a graphical 2D space was organized by means of a
factor analysis on the adjectives but here we wanted to experiment with a new simple algorithm
whose results, despite its semplicity, shown very interesting analogies with more computationally
complex approaches.

Our multidimesional scaling algorithm defines, starting from an N dimesional array, a bidimesional
space where each expressive intention finds its place, determined in an off-line elaboration, so as to
provide a set of predefined points. Then we can move between these points during a real time
performance and see which is the intention we are getting closer to.

To define this plane, for each cue in each mood, the average value over the whole performance was
computed so as to have a global set of identifying parameters, then they were scaled to get al the
values in the same magnitude order (the results are shown in table 1):

Tempo Mart SDATrt M Snd SDSnd MattVel
Agitato 190 48 63 43 12 49
Brillante 135 48 157 24 31 44
Cupo 85 62 93 33 96 24
Neutro 100 69 83 44 99 47
Passionale |123 61 71 58 107 59

Table 1: averages values for each cue over the whole performances

Now, the basic idea is to recursively reduce the dimensions of the emotional space by taking two
axis at atime and reduce them to one aslong as we don’t reach the desired compression rate.

In particular we proceed as follows:

1. Select two cues and plot all the states as function of these parameters only

2. Plot the lines which join the origin with the two outer expressive intentions (i.e. those with
smallest and largest angular coefficient) so asto define an angle o that spans all the plotted
states

3. Plot the bisecting line n for the angle a; n is at an angle ¢ with the X axis

4. Project all the expressive intentions on n: for each of them, the new value simply is the sum of
old values multiplied by Cos ¢ and Sin ¢

5. Go back to step 1 until we get the desired compression rate.

In our case, we compressed all the tempo related cues (tempo, mean of articulation, standard
deviation of articulation) on the X axis while those related to dynamics (mean of sound level,
standard deviation of sound level and mean of attack velocity) were assigned to the Y axis, as
shown by the schema presented in figure 7.

Figure 8, instead, shows an example of the compression algorithm for reducing the mean and
standard deviation of articulation to one value.

14
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Fig.7: compressing the 6D space to 2D
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Fig.8: an example of the compression procedure

Of course the choice of the compression order, in principle, may affect the fina plot (it's like
changing the weights in a sum) and this influence gets stronger as the number of origind
components increases. However, since in this experiment we had only a couple of compressions on
each axis, the order didn’t show to be relevant to the final graph which is showed in figure 9.
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Fig.9: the 2D compressed emotional space

Now it is very interesting to compare this output with the well know Sammon multidimensional
scaling algorithm. This algorithm (for a detailed description see (Sammon 1969)) tries to
approximate the original distances between vectors in a N-dimensiona space by finding a new set
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of points in the Euclidean one. This is accomplished by optimizing a cost function (3) which
indicates how much precisely the original distances should be approximated:

' 2
8 [d(k,1)- d (k)]

E. =
Y d(k,I)

3)

Where d(k,|) is the distance between vectors X, and X; in the original space while d (k,!) is the
distance between vectors X' and X’ in the compressed space.

Reducing the expressive space with this algorithm gives the output shown in figure 10:
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Fig.10: compressing the expressive space with Sammon algorithm

As we can see, the two outputs are strikingly similar: even if Passionale and Cupo are mirrored on
the X axis, the important thing to point out is that the ratios between the distances among the
various points are very close to each other in both plots.

This shows our algorithm to be an interesting tool to approximate the Sammon'’s. In fact, due to its
computational complexity and lack of generability (adding a new point forces all the distances to be
computed again) the Sammon algorithm is not suitable for real time applications while, with ours,
it's very simple to add a new point into the space so as to track, for example, the expressive
intention of alive performance.

Thisis exactly what the patch shown in figure 11 does while “listening” to the performances of our
recorder player.

It should be pointed out, anyway, that the patch is tuned on the data of a particular player on a
particular piece and so trying to track the same expressive intentions on different players or

16



instruments is very likely to produce bad results as long as a compression with some training datais
carried out to make an ad hoc emotional space where to move into.
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Fig.11: an EyesWeb patch that tracks the expressive intention of the performancein rea time
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2.2 Recognition of expressive intentions on violin®

Once shown we can track in real time a particular expressivity in an emotional space, it is now
interesting to see whether it is possible to build a statistical model that can give us the probabilities
assigned by the recognition system to each intention.

To accomplish this, we recorded two set of performances, still on the same excerpt shown in figure
6, played on violin by afirst part of the Carlo Felice Theater Orchestra (maestro Fabrizio Ferrari).
This time, for semplicity’s sake, the required expressive intentions were limited only to the
following three cases:

* Agitato
* Brillante
* Cupo

Like in the previous experiments, all performances were recorded with a sampling rate of 22050Hz,
16 bit resolution and then they were analysed by the EyeswWeb patch like the one in figure 4 so as
to extract the following set of audio cues (averaged by looking at the events detected in the time
window which was set to a 4 seconds width and updated 5 times per second. For cues definitions,
see §1.4):

*Tempo 1l

* Articulation

* Standard Deviation of Articulation
e Sound Leve

* Sound Level Difference

* Attack Velocity

One of the two recorded sets was chosen as reference for extracting representative data from the
performances. By analyzing the various expressive intentions, the cues (whose distributions we
know are Gaussian thanks to the Central Limit Theorem, as noted in §1.4) showed to have the
following overall Mean (M) and Standard Deviation (SD) (Table 2):

Mean Cupo Brillante Agitato
Tempo 0.20455 0.11263 0.14558
Articulation 0.59644 0.50132 0.55864
SD of Articulation 0.08214 0.05669 0.06693
Sound Level 0.05284 0.01156 0.03844
Sound Level Difference -2.1226 -0.6427 -0.8611
Attack Velocity 0.08992 0.03093 0.07226
Standard Deviation Cupo Brillante Agitato
Tempo 0.01402 0.00071 0.00203
Articulation 0.02154 0.01309 0.01556
SD of Articulation 0.00260 0.00092 0.00148
Sound Level 0.00165 0.00003 0.00021
Sound Level Difference 193.694 12.2506 16.1832
Attack Velocity 0.00775 0.00027 0.00100

Table 2: overall mean and standard deviation for the reference set of performances

% Results from this experiment were presented in (Dillon 2003)
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These data are also presented graphically in figure 12 so as to provide an easier evaluation of the
differences among the ranges showed by the various cues.

It isinteresting to notice how the Agitato expressive intention falls in between the Cupo and the
Brillante, showing it has similar characteristics of both.
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Fig.12: Mean and Standard Deviation of the cues (1 isfor Cupo, 2 isfor Brillante, 3 isfor Agitato)

Now, to check whether the extracted cues are actually able to show statistically meaningful
differences among the three performances, a single factor ANOVA* analysis was carried out.
The computed F and p values (a = 0.05. F critical valueis 3.0191) are shown in Table 3:

Expressive Cue Computed F P-Value
Tempo 44,0845 5.69 E-18
Articulation 17.8136 3.98 E-08
SD of Articulation 12.8306 4.028 E-06
Sound Level 73.187 <E-20
Sound Level Difference 0.97481 0.3781891
Attack Velocity 31.6994 1.79 E-13

Table 3: ANOVA Results

* For areference on this and the following statistical analysis tests see, for example (Crow et al.1960)
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Aswe seg, the results are very good with the only exception of sound level difference. Actually the
performer followed the same kind of crescendo/decrescendo patterns in all the performances, so this
bad result is understandabl e.

To have a more accurate understanding of the results, also F and T tests were computed for every
possible couple of performances for each expressive cue. In this way we can determine whether
means and/or standard deviations of the Gaussian distributions are different enough to guarantee a
good identification between different performances.

The results are presented in Table 4. The value shown is the probability of incurring in a Type-
error (a = 0.05) i.e. rgecting the null hypotesis (samples are coming from the same distribution)
whileit is actually true.

Tempo F-Test T-Test
Agitato / Brillante 1.1 E-07 1.1E-8
Agitato / Cupo <E-10 <E-10
Brillante / Cupo <E-10 <E-10
Mean of Articulation F-Test T-Test
Agitato / Brillante 0.3741 0.0017
Agitato / Cupo 0.1599 0.0039
Brillante / Cupo 0.0181 < E-10
Standard Deviation of Articulation |F-Test T-Test
Agitato / Brillante 0.0158 0.0376
Agitato / Cupo 0.0243 0.0052
Brillante / Cupo 9.09 E-7 2.29E-7
Mean of Sound L evel F-Test T-Test
Agitato / Brillante <E-10 <E-10
Agitato / Cupo <E-10 2.96 E-5
Brillante / Cupo <E-10 <E-10
Sound L evel Difference F-Test T-Test
Agitato / Brillante 0.1518 0.6756
Agitato / Cupo <E-10 0.2623
Brillante / Cupo <E-10 0.1801
Mean of Attack Velocity F-Test T- Test
Agitato / Brillante <E-10 < E-10
Agitato / Cupo <E-10 0.0161
Brillante / Cupo <E-10 < E-10

Table4: Fand T testsfor every pair of performances

As these results show, the statistical analysis produced good results although with the relevant
exception of the Sound Level Difference cue.

We see there are problems just in a few cases but when one test fails, the other test shows quite
good results (like in the Agitato/Brillante for Mean of Articulation cue: the F test is very bad but the
T test is good).

Hence the probability of wrongly classifying a performance is low, provided both mean and
standard deviation of the distributions are known.
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Now that we have proved the chosen cues to show statistically meaningful differences between the
various performances, we can proceed to propose a system that attempts to recognize the particular
expressive intention on the basis of the overall mean and standard deviation for each cue.

The proposed system is based on a Hidden Markov Model (for an introduction to HMM see, for
instance, (Rabiner, Juang 1986) or (Ghahramani 2001)) that we implemented in MatL ab.

The HMM vyields the probability that the cues extracted by the EyeswWeb patch at a certain time
belong to a given intention and our aim is to test the system with the other set of performances
previously recorded by the same violinist, so asto find out if we can correctly classify a cue vector
from a particular time frame of a new performance by knowing only a set of globa parameters, i.e.
mean and standard deviation, gained from a different training set.

The Observable States of the HMM are the cue values while the Hidden States, i.e. those we want
to guess by looking at the obervable states, are the different expressive intentions, as shown in
figure 13.

Tempo Articulation M. Articulation SD Sound M Sound Diff Attack Velocity

e T

-"GT0TC

Agitato Brillante Cupo

Fig.13: HMM structure

The HMM is defined by a Transition Matrix (TM), a Confusion Matrix (CM) and by a I1-vector
representing theinitial state, which is the hidden state we choose the system to start from.

It should be stressed that, in our case, the CM is not constant in time and is a 6x3 matrix defined so
as each row yields, for each cue, the conditional probability (Pr.) that the current value belongs to
one of the possible hidden states. Note that the sum of the elements in each row must be 1 since the
incoming value must be from one of the possible hidden states.

éae Pr .Tempo | Agitato Pr .Tempo .|Brillante Pr .Tempo |Cupo 0
¢ Pr.Art.M |Agitato Pr .Art.M |Brillante Pr.Art.M |Cupo -
8 Pr .ArtSD | Agitato Pr .Art.SD |Brillante Pr.Art.SD|Cupo =

¢ Pr.SoundM |Agitato  Pr.SoundM |Brillante  Pr.SoundM |Cupo
gPr.SoundDiff |Agitato  Pr.SoundDiff |Brillante  Pr.SoundDiff |Cupo ©
& Pr.AttackVel |Agitato  Pr.AttackVel |Brillante  Pr.AttackVel |Cupo 3

Fig. 14: The Confusion Matrix
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Where, for example:

10em)?

B
Pr Tempo | Agitato = oie 2 s? dx (4
A S

o and p are the overall standard deviation and mean previously calculated for the cue Tempo,
respectively, in the agitato performance.

The integration interval [A,B] is centered around the current cue value and its amplitude D is equal
to

D=(Vmax-Vmin)/N (5

Here Vmax and Vmin are the maximum and minimum values assumed by the cue, as calculated
previoudy, and N is equa to 1+1.43In(n) where n is the overall number of samples (i.e. time
frames).

The TM instead, which defines the probability of being in state X at timet, having been in state Y
at time t-1, is constant in time and has been defined by optimizing the probability of correctly
classyfing the performances having the CM already defined and the original set of performances as
input.

Theinitia state is assigned to the Agitato (IT-vector = [1 0 0]) since, as we have noted previoudly,
this performance showed to be half way between the two others and so looks like a good starting
point.

The MatLab application produces the results shown in figures 15-17: it takes as input a vector with
the cues extracted by the EyeswWeb patch plus the previous state. Then it computes the CM,
normalizing the rows so that the sum of the elementsis equal to 1.

Having the CM, we can now compute a 3-component vector V (where each component represents
the probability of a hidden state given the current set of cues) by doing the product between a 6-
component weighting row vector W and the CM columns (this is useful for emphasizing the effect
of a particular cue over the others. In this particular case we dlightly emphasized the tempo cue
since the tests showed it to be a very meaningful and reliable one).

The probability vector V is normalized in such away that the sum of its elements makes 1 and then
its components (as a column vector) are multiplied with the respective elements of the Transition
Matrix, having chosen the row according to the preceeding state value.

In this way we get a new vector P that, once normalized to 1, gives the final probability of having a
particular hidden state.

In other words, the resulting j-th component is (st refers to the particular row, i.e. the preceeding
state):

Pj :VJ *TMSt,j (6)
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Figure 15: Listening to the ‘ Agitato’ performance. The abscissa shows the sample number (there are
5 samples per second) while the ordinate is the probability assigned by the system to a particular
expressive intention (P; in formulan.6). The line marked with ‘*’ refers to Agitato, ‘+' to Brillante,
‘0’ to Cupo.
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Figure 16: Listening to the ‘Brillante’ performance. Symbolsasin fig.15
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Figure 17: Listening to the ‘ Cupo’ performance. Symbolsasin fig.15

As we see from the figures, the system shows very good results: the ‘Agitato’ (fig.15) is correctly
recognized during the whole performance without any problem, in fact its probability is the highest
from the beginning to the end of the piece. The ‘Brillante’ is recognized very well too: the system
switches on the correct state just in a couple of seconds. The ‘Cupo’ is recognized amost
istantaneously and correctly identified over the whole performance with the exception of a frame,
corresponding to the end of bar 7 and bar 8 as shown in figure 6, where it's misunderstood for being
‘Brillante’.

Actually, in that point we have some repeated 8" notes patterns that were performed with the same
kind of bowing between the different performances and this succeeded in “confusing” the system
for a short while (it’ s interesting to note also that in fig.16, at that point, the ‘Brillante’ and ‘ Cupo’
probabilities get close to each other, although in that case the correct ‘Brillante’ state is mantained
throughout the whole passage), anyway, during the cadenza ending on the dominant, which
concludes the played excerpt, the performance is again recognized correctly, showing this could a
reliable approach for the recognition of the expressive intentions of a player once the system has
been trained with very basic data such as the mean and the standard deviation of the cues.
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Part |11

Who is playing?
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3.1: A dlightly different problem: who is playing?

The problem of recognizing the expressive intention of a musical performance is closely related to
another, fascinating one: recognizing the artist who is playing, in other words, recognize his style
characteristcs.

Previous research on this topic (Widmer 2001; Stamatatos 2002; Stamatatos, Widmer 2002) showed
promising results trying to classify severa piano teachers and students, while recent developments
(Zanon, Widmer 2003) are showing that it is possible to successfully studying performances of
famous pianists by means of machine learning techniques.

To seriously study this topic, the acquisition of a very large set of feasible data is a required
prerequisite and this is a problem in it's own right, so in this thesis we are ssimply carrying out a
basic experiment (see Dillon 2003b) to check whether a basic knowledge of audio cues distributions
is enough to correctly identify who is playing in a particular piece of music so as to understand
whether this techinque can be of some help in the very complex topic that is the study of style
characteristcs of different artists.

3.2: Glenn Gould, Maria Joao Pires and Director Musices play Mozart

For our experiment we got a recorded performance of the first 20 bars of the 2" movement from
Mozart Piano Sonata K332 by two very famous pianists: Glenn Gould (Sony Classica SM4K
52627, 1967) and Maria Joao Pires (DGG 431 761-2,1991) then, to make things more interesting,
we selected also a computer rendered performance by the well know software Director Musices
developed at KTH (Friberg et al. 2000).

The Diretor Musices performance was made without any attempts to simulate a particular
expressive style and the following rules/values were used:

* Harmonic Charge: 2.0 (Amp: 1.0, Dur: 0.5, Vibfreq: 0)
* Score Staccato: 1.0

* Duration Contrast: -1.0

* Note Triplet Contrast: 1.0

* Punctuation: 1.0 (Dur: 1.0, Duroff: 1.0, Markphlev7 Nil)

* Phrase Arch: 0.5 (Phlevel: 7, Amp: 1, Turn: 0.5; Phlevel: 6, Amp: 1, Next:0.5, Turn: 0.5, Phlevel:
5, Amp: 1, Turn: 0.5)

Since this performance was originally rendered as a midi file, it was converted into a wave file to
make it readable by the EyesWeb system exactly like the other performances (like the previous
experiments, we are using a patch such as the one shown in figure 4). Moreover reverberation was
added to make it sound more natural and similar to those by Gould and Pires.

Now we wonder whether, using the same set of cues and following the same approach we did in
§2.2 for classifying the expressive intentions on violin, we can extract basic parameters, such as
mean and standard deviation for each cue, that will be useful for correctly guessing at the particular
player over the whole 20 bars and see whether and how the recognition changes across them.

26



By analyzing all cues over the whole 20 bars as performed by the two pianists and the Director
Musices, the following overall Mean (M) and Standard Deviation (SD) values, listed in Table 5 and
shown in figure 18, were obtained:

Mean:
Tempo M. SD M. Sound Sound Level Attack
Articulation | Articulation Level Diff. Velocity
Pires 0.197 0.585274 0.061273 0.001689 -0.085258 0.006014
Gould 0.189 0.542607 0.066712 0.002999 -0.080726 0.010789
Director 0.193 0.571195 0.060982 0.011473 -0.194720 0.024611
Musices
Standard Deviation:
Tempo M. SD M. Sound Sound Level Attack
Articulation | Articulation Level Diff. Velocity
Pires 0.0719 0.124536 0.032434 13.011E-4 0.497080 0.005758
Gould 0.0674 0.091603 0.034942 22.859E-4 0.393085 0.008166
Director 0.0594 0.099107 0.026003 47.366E-4 0.631001 0.009641
Musices
Table 5. Overall mean and standard deviation for each cue
Tempo Mean of Articulation
03 0.75
- 0.7 F
025 i I 0.65 ¥
0.6
02 <
0.55 i ——
0.15 0.5 C
- L ) 0.45 -
0.1 0.4
1 2 3 1 2 3
Standard Dev. of Articulation 0.018 Mean of Sound Level
0.105 0.016 I
r 0.014
0.085 0.012
0.01 /0
0.065 — — 0.008
0.006 -
0.045 0.004 :/
L 0.002 T ——
0025 o r L
1 2 3 1 2 3
Mean of Sound Difference Mean of Attack Velocity
. 0.04
0.35 T — _
0.15 0.03
'0.05 0-02 /‘>
-0.25 i /I/ -
-0.45 L 001 — l
-0.65 _ 0
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Fig.18: Mean and SD for each cue (1

: Pires, 2: Gould, 3: Director Musices)
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From these results, we can see that all the performances show very similar tempos and that the
Director Musices performance shows much higher sound level values than the pianists.

It should be pointed out that no normalization of loudness was carried out, since the loudness
differences between the performances appeared relevant from an expressive point of view. Thus
Pires played softly while the others played louder producing higher tone amplitude peaks.

Now, as before, we should check whether this basic and overall description of the various
performances is actually able to show statistically meaningful differences among the three
performances. Therefore asingle factor ANOV A analysis was carried out on all the different cues.

The computed F and p values (a = 0.05. F critical value is 3.00) are shown in table 6

Expressive Cue Computed F P
Tempo 1.005354 0.366271
Articulation Mean 34.16078 < 0.00001
Articulation Std. Dev. 6.88839 0.001
Sound Level Mean 1874.934 < 0.00001
Sound Level Difference 5.527064 0.004
Attack Velocity Mean 777.0159 < 0.00001

Table 6: Results of the single factor ANOV A analysis for the three pianists

As we can see the results are, again, very good, showing very low p values for al the cues except
for the Tempo. This is natural since we aready noticed al the performances were similar in this

aspect.

It should be noticed that the Director Musices performance was quite different regarding dynamics
and loudness. This clearly influences ANOVA results. Therefore, to understand how much each
performance differed from the others, F and T tests were computed, for every possible couple of
performances for each expressive cue. In this way we can determine if means and/or standard
deviations of the Gaussian distributions were different enough to guarantee a good identification
between different performances, exactly like we did for the problem faced in §2.2.

The results are shown in Table 7 (here, again, the value shown is the probability of incurring in a
Type-l error, i.e. rgjecting the null hypotesis):
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Tempo F-Test T-Test
Pires/Gould 0.12065 0.17359
Pires/ Director Musices 0.00014 0.45811
Gould / Director Musices 0.00764 0.44361
Mean of Articulation F-Test T-Test
Pires /Gould 7.58942E-19 4,02423E-15
Pires/ Director Musices 1.50146E-08 0.05476
Gould / Director Musices 0.20190 2.82246E-07
Standard Deviation of Articulation F-Test T-Test
Pires/Gould 0.02805 0.001663
Pires/ Director Musices 1.14565E-06 0.871614
Gould / Director Musices 7.58327E-11 0.002139
M ean of Sound L evel F-Test T-Test
Pires/Gould 1.64603E-54 4.40842E-42
Pires/ Director Musices 1.0556E-195 4.87E-142
Gould / Director Musices 3.73603E-66 4.4638E-125
Sound L evel Difference F-Test T-Test
Pires/Gould 2.23075E-05 0.89642
Pires/ Director Musices 1.02221E-05 0.01009
Gould / Director Musices 6.04711E-18 0.003528
Mean of Attack Velocity F-Test T-Test
Pires/Gould 1.48838E-22 2.6873E-39
Pires/ Director Musices 4.67813E-33 9.8332E-138
Gould / Director Musices 0.00023 2.1417E-93

Table 7. Fand T Testsfor every pair of performances for each expressive cue

As shown in Table 7, the statistical analysis produced once more good results, again with exception
of the Tempo Cue, since al the performances were similar in overall tempo. There are problems
just in a few cases but when one test fails, the other tests show quite good results so we can state
again that the probability of wrongly classifying a performance is low, provided both mean and
standard deviation of the distributions are known.

So we can proceed to build the HMM to classify the performances. In this case it will be like the
one showed in figure 19:

Tempo Articulation M. Articulation SD Sound M Sound Diff. Attack Velocity

e T

Hidden Stetes Q Q Q

Fig.19: the HMM structure
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In this case the Transition Matrix has been ssmply defined as shown below where rows refer to the
previous state and columns to the current state. The rows/columns sequence is Pires, Gould,
Director Musices. In each row the sum of the elements must be 1:

2045 035 0.2%
€035 045 02:
03 03 04

Aswe see, the matrix is defined in such away that it favours the mantaining of the current state but
the mantaining probabilities, along the diagonal in the matrix shown above, are relatively low.

This choice allows more freedom to the system since it can take wrong decisions with relative ease
but can also favour possible subsequent corrections.

Theinitial stateis assigned to the Director Musices (IT-vector = [0 0 1] i.e. selecting the third row of
the TM). The reason for this choice was that the statistical analysis showed this performance to be
considerably different from the other two in several aspects. Hence it should be recognized more
easily. Accordingly, this allows us to set its mantaining value sightly lower than those assigned to
the other states.

The changing state probabilities are equal for the Director Musices row while for Gould and Pires
they were assigned to make switching between the professional performers easier than moving to
Director Musices.

The Confusion Matrix (shown in figure 20) follows the same approach of the one in figure 14 and
each element has the same meaning as explained by the formula (4).

e Pr.Tempo|Pires Pr Tempo. | Gould Pr Tempo | DirectorMusices 0
gPr.ArticuIationM | Pires  Pr.ArticulationM |Gould  Pr.ArticulationM |Direct0rMusicesZ
CPr.ArticulationSD | Pires  Pr.ArticulationSD | Gould  Pr.ArticulationSD | DirectorMusices ™
8 Pr.SoundM | Pires Pr.SoundM | Gould Pr.SoundM | DirectorMusices
¢ Pr.SoundDiff | Pires Pr.SoundDiff | Gould Pr.SoundDiff | DirectorMusices

Pr.AttackVelocity | Pires  Pr.AttackVelocity | Gould  Pr.AttackVelocity | DirectorMusi c&e,:a

Fig.20: The Confusion Matrix for classifying the Mozart performances by Pires, Gould and DM

To compute the final probabilities P, (formula n.6) we proceeded like the previous chapter (see
pag.22) but, in the present experiment, we emphasized the cues that showed the best statistical
results (Articulation Mean, Sound Level Mean and Attack Velocity Mean) over the others.

30



The analysis of the different performances of the Mozart excerpt yielded the results presented in
figures 21, 22 and 23
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. Fig.21: Listening to Pires. The abscissa shows the sample number (there are 5 samples per second)
while the ordinate is the probability assigned by the system to a particular performer (B). The line
marked with **’ refersto Pires (p), ‘+ to Gould (g), ‘0’ to Director Musices (dm).
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Fig.22: Listening to Gould. Symbolsasin fig.21.
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Fig.23: Listening to Director Musices. Symbolsasin fig.21.

As we see from fig.21-23, the system shows good results: Pires (fig.21) is correctly recognized
during the whole performance without any problem (her probability is the highest from the
beginning to the end of the piece).

The Director Musices performance (fig.23) is correctly recognized too: it starts as Pires, moving to
Gould soon afterwards, then it gets to the correct state at about sample #60 (i.e. after 12 seconds of
music) and keeps it through the end of the piece. It is interesting to see that this performance is the
one that received the highest probability value, higher than 70%. We can also notice that these
curves are much more irregular than those plotted in the other figures but, like the Cupo expressive
intentions studied in 82.2, this was expected since the statistical analysis showed several cues with
high standard deviation values. Due to this reason, this performance looked more irregular.

The recognition process was least successful for Glenn Gould’ s performance (fig.22).

His performance was mistaken for that of Pires for dightly more than half of the performance
excerpt (up to sample #230) but correctly recognized afterwards. This was probably due to the fact
that Gould starts very softly and then “builds up” in the second part of the performance so, at the
beginning, heis actually “hiding” himself. Pires instead keeps an overall soft approach through the
whole excerpt so, at the beginning, the two performances actually have similar characteristics.

In conclusion, the system displays good results and seems to be able to recognize the particular
performer, in this particular piece, despite the rather smplistic tools used.

It would be then interesting to study large scale data and see whether it is possible to extract more
genera information regarding style characteristics of single artists or even of particular schools of

playing.
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Part IV

Detection of Arousal
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4.1: A problem aside: what is“Arousa” ?

Whether music is actually able to induce emotions in listeners or not is still a topic on which the
scientific community frequently debates without being able to find a common view (Scherer 2003).
Nonetheless the research on this topic is very lively all around the world and the studies that tried to
correlate several aspects of musical structures to emotional reactions have produced fundamental
works, from the pioneering (Cooke 1959) to (Sloboda 1991) and, more recently, (Gabrielsson,
Lindstrom, 2001), while studies focusing on the analysis of musical performance aspects, such as
tempo and articulation, are summarised in (Juslin 2001) .

Lately, aso in our Musical Informatics Laboratory there have been some experiments aimed at
measuring an emotional engagement of listeners and then tried to correlate the results with video
and audio data streams (Gremo 2002, Casazza, Pertino 2003, Timmers et a. 2003, Marolt et al.
2004), following the ideas and approach proposed in (Krumhansl, Schenck 1997), so as to quantify
the arousal of emotion (i.e. a high emotional engagement) in people.

Personally, | believe music is able to produce strong and sudden emotions in listeners, as it was
commonly believed in the past centuries where none would have discussed about its power to move
people emationally (as clearly shown by the introductory excerpt to this thesis taken from the
beginning of Monteverdi’s Orfeo, 1607 or by XVIII century reports of performances of singers such
as Farinelli, able to temporarily heal Felipe V from his depression, or Pacchiarotti, who forced a
whole orchestra to stop during a performance since he moved all of them to sighs and tears (Barbier
1999), or even to XIX century histeric reports of Paganini’s concerts (Berri 1962, Guhr 1830)). So |
think the biggest problem is not deciding whether music does produce emotions or not but how to
scientifically measure this effect and how to produce it at will.

The measuring technique is a very difficult problem to solve in its own right: probably the best
solution would be to design some systems that do not require a conscious feedback from the listener
(such as electrodes and sensors measuring heart beat, skin conductivity, blood pressure etc.) but
since such experiments are extremely difficult to be arranged properly, the most common tool used
is a ssimple dlider that should be moved by the listener when he/she feels the music is producing
some effects on him/her.

Thisis obviously quite risky since it would be very easy for unexperienced listeners to ssmply track
the volume of the performance running on and not any emotional effect such music is actually
producing on them.

Due to this problem, we believe that, for having a meaningful experiment with this very basic tool
not only the choice of the music pieces is critical but also the people who are chosen as subjects
should be very well instructed on what to do and, whenever possible, they should also have had
some previous experience in these kind of experiments to avoid fake measurements as much as
possible.

4.2: Arousal in Bach Solo Violin Sonatas

Although being aware of the “ volume effect” issue just explained, we decided to use a tracking
dlide in a EyewWeb patch (figure 24) and then to select a small group of people among researchers
in the field who knew the risks involved in this approach and hence should have known how to
avoid its pitfalls.

The used patch gives the listener control on a slider, ranging from 0 (no emotional involvement) to
127 (very high involvement) and then saves the slider position, along with a time stamp, to a text
filefor later analysis. The dlide value is saved two times per second.
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Fig.24: an EyesWeb patch for tracking emotional response while listening to music

For our experiment we selected two contrasting movements from J.S. Bach Sonatas for solo violin
(the Presto from Sonata I, shown in figure 25, and the Largo from Sonata 11, figure 26) so as to
look for aspects that go beyond the character of the piece but that, nonethel ess, could be responsible
for rising emotional effectsin listeners.

S == 9 i

Fig.25: J.S. Bach: Sonata | BWV 1001, Presto
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Fig.26: J.S. Bach: Sonata |1l BWV 1005, Largo

The two movements were performed, on a priceless Guarneri del Gesti made in 1728, by Tanja
Becker Bender, a young international level soloist winner of numerous prizes and awards, and
professionally recorded in an historical setting (a X1V century Abbey located near Genoa) so as to
make her feel asinspired asin areal performing environment.

For the experiment, three people were choosen and they had a chance to listen to the music first, if
they were not already acquainted with these particular pieces, and then another listening session
followed where they tracked their emotional engagement.

The results for each person and the overall average are shown in the following figures (27 —34: Y
axis shows arousal response, X axis shows sample number. There are 2 samples per second):
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Fig.27: Arousal response to Presto BWV1001. First subject
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Fig.28: Arousal response to Presto BWV1001. Second subject
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Fig.29: Arousal response to Presto BWV1001. Third subject
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Fig.30: Arousal response to Presto BWV1001. Average

37



140

120

100

80

60

40

20

0

7N

N\

/™ ;
[ N\

\

/

S

NS

\

A

\ o4

/

pAWAW

1 29 57

85 113 141 169 197 225 253 281 309 337 365 393 421 449

Fig.31: Arousal response to Largo BWV 1005. First Subject
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Fig.32: Arousal response to Largo BWV 1005. Second Subject
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Fig.33: Arousal response to Largo BWV 1005. Third Subject
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Fig.34: Arousal response to Largo BWV 1005. Average
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Interestingly, the responses of the various subjects show peaks in the same positions and these,
underlined by the average profiles, are the points that interest us in this study.

It is aso interesting to see that most of the peaks fall down more steeply than their rises,
accordinlgy to the idea that intense emotions can not last too long but only for a few seconds and

then vanish quickly (Picard 1997).

Now we wonder which are the factors that determined the rise and fall of the emotional engagement
and whether it is possible to extract a set of rules able to explain these and then to predict them.
First of all, let us split the average profiles dividing the rising parts from the falling ones, as shown

in figures 35 and 36:
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Fig.35: Presto BWV 1001: average arousal underlining rising, falling and stable segments
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Fig.36: Largo BWV1005: average arousal underlining rising, falling and stable segments

The next step was to extract the cues from the performances and then to see how these correl ate
with the rising/falling arousal profiles.
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Due to the particul ar task we are facing, this time we used an extended set of cues:

* Tempo 1 (Note DR)

* Tempo 2 (Notes per second)

* Articulation

e Standard Deviation of Articulation
* Sound Level

* Sound Level Difference

* Attack Velocity

Moreover we developed further blocks for extracting the overall energy of the signal and also the
energy in different frequency bands so as to analyse whether some bands had more relevance in the
listeners’ responses (the Guarneri being used showed extremely strong harmonics) and we also
looked at the pitch being played to see whether passages with rising/falling scales had any influence
on the responses.

The available range was divided logarithmically so as to have a better resolution in the low
frequency bands. In particular the analysed bands were:

*172-334 Hz
* 344 - 689 Hz
* 689 — 1378 Hz
* 1378 — 2756 Hz
® 2756 — 5512 Hz

* 5512 - 11025 Hz

Both recorded performances were analysed using the time window approach.

The Presto had a time window width of two seconds while for the Largo the width was set to three
seconds (we reduced the time frame width in respect to the others experiments since we didn’t want
to miss fast events that might have been responsible for changes in the arousal measurements). The
time window was updated two times per second.

The following tables (8 through 15) show the correlation coefficents R between the measured
arousal and the various cues. R values with higher absolute values than 0.40 are marked in bold and
Rrangeisfrom—1 (variables fully inversely correlated) to 1 (variables fully correlated):

Rises (stat MeanDR  Notes/s ArtMean ArtSD SndLev  SoundDiff AttVel Av Energy  Pitch
and ending
samples)
1.44 -0.3769 0.4293 -0.2360 0.1682 0.0127 -0.0959 0.1997 -0.0228  0.4397
54.77 -0.7487 0.4186 -0.5953 -0.2744  0.8436 0.2337 0.6864 0.1837 -0.5525
108.131 0.4823 0.6648 -0.0824 -0.3672 0.2491 0.0078 0.3304 0.6589 0.5844
140.164 0.0211 -0.0322 -0.2231 0.2996 -0.4276 0.0139 -0.3210 -0.2836 -0.5498
172.237 -0.0488 0.1461 -0.0424 -0.1689 -0.7748 0.0879 -0.5161 -0.3935  0.2865
266.292 -0.2232 0.3065 0.1222 0.0932 0.2165 0.1195 0.2266 0.2315 0.0397
317.337 -0.2179 -0.3808 -0.1258 0.1070 -0.0324 -0.5850 0.1460 -0.3783  0.2776
345.379 -0.3466 -0.1674 -0.0029 -0.1311 0.6087 -0.1907 0.4162 0.1624  0.2863

Table 8: R values for basic cues (Presto BWV1001) tracking risesin arousal response
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Rises (start and
ending samples)
1.44

54.77
108.131
140.164
172.237
266.292
345.379
317.337

172-344 Hz 344/689Hz

-0.3944
0.2015
-0.0994
0.1159
-0.2988
0.0712
-0.2927
-0.2105

689/1378Hz
0.0305 0.0351
0.2224 -0.2100
0.1113 0.6381
-0.3624 -0.1735
-0.3681 -0.1392
0.0372 0.4453
0.0599 0.1855
-0.3592 -0.1946

1378/2756Hz 2756/5512Hz 5512/11025Hz
-0.0490 -0.0016 -0.0968
-0.1428 -0.3425 -0.3685
0.5963 0.5632 0.6652
-0.1010 -0.2429 -0.3791
-0.1839 0.0292 -0.0417
-0.0008 0.2902 0.2479
0.1999 -0.1630 -0.0205
-0.2504 -0.1973 -0.2228

Table 9: R values for energy band cues (Presto BWV 1001) tracking rises in arousal response

Falls (startand MeanDR Notes/s

ending samples)
46.54

76.92
131.137
164.172
237.251
292.303
337.345
379.401

0.8591
0.2538
0.8838
0.1056
0.6374
-0.9148
-0.5946
-0.3763

0.8565
-0.2634
0.7792
0.7804
0.8911
0.4703
0.1086
-0.1775

ArtMean

0.6496
0.3679
-0.1595
0.5351
-0.0302
0.2098
-0.2943
-0.2744

ArtSD SndLev

0.4792
0.7140
0.5149
-0.5667
-0.1005
-0.1391
0.5403
-0.2414

0.9018
-0.3008
-0.6044
-0.8115
-0.3339
-0.5460

0.9852

0.1490

SoundDiff  AttVel

-0.5537
-0.0721
0.3122
-0.3635
0.0892
0.2005
-0.3288
-0.5418

0.9036
-0.6944
-0.4703
-0.7359
-0.3736

0.5629
0.1448
0.7001
0.2035
0.6584

0.1307 -0.6154
0.7372 -0.3710
-0.0079 -0.0703

Table 10: R values for basic cues (Presto BWV1001) tracking fallsin arousal response

Falls (startand 172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz
ending samples)
46.54 0.0276 0.4019 0.7875 0.5109 0.6028
76.92 0.1648 0.1466 0.1230 -0.0007 -0.3853
131.137 -0.6677 -0.0343 0.6681 0.6887 0.7042
164.172 0.3286 0.1769 0.1783 0.3281 -0.4137
237.251 -0.3698 -0.4454 0.6985 0.5825 0.6997
292.303 -0.2438 -0.3654 -0.3907 -0.2422 -0.5723
337.345 -0.2473 0.0095 -0.2743 -0.8711 -0.7635
379.401 -0.1480 -0.1494 0.0355 -0.0281 -0.2039

Av Energy Pitch

0.7375
-0.3476
0.8931
-0.1393
0.6254
-0.3980
0.4285
-0.0676

5512/11025Hz

0.4708
-0.4249
0.9151
-0.3895
0.6599
-0.4649
-0.7594
-0.1907

Table 11: R values for energy band cues (Presto BWV1001) tracking fallsin arousal response

Rises (start and MeanDR Notes/s

ending samples)
1.61

70.108
122.141
190.221
247.261
269.278
294.318
337.345
377.398
415.423
430.442

-0.4984
-0.2913
-0.3558
-0.0666
-0.8723
-0.3859

0.3120
-0.7628
-0.2318
-0.2217
-0.0160

0.2645
-0.1254
0.2800
0.3624
-0.4233
0.6645
-0.4262
0.01264
0.2168
0.6668
-0.6479

ArtMean ArtSD

-0.2649

0.0752
-0.3236
-0.0143
-0.6048
-0.2753

0.6200
-0.8468
-0.2318
-0.0567
-0.5188

SndLev
0.0561 0.8676
-0.0450 0.0690
0.4375 0.6838
-0.3642 0.8136
0.0130 0.7856
0.1566 -0.9628
0.4173 -0.3906
0.1714 0.8757
0.4938 0.8095
-0.1360 -0.8021
0.0924 -0.0330

SoundDiff  AttVel

0.1455
-0.2661
-0.1214

0.4348
-0.2172

0.2969

0.2692

0.1834
-0.1467

0.1462
-0.0232

0.8334 -0.1700
-0.1120 -0.3368

0.7664
0.5182
0.7713
-0.8605

0.4368
0.5438
0.0426
0.5298

-0.3362 -0.1851
0.5141 -0.7574

0.6720

0.3749

-0.4113 -0.3382
0.6981 -0.3376

Table 12: R values for basic cues (Largo BWV 1005) tracking risesin arousal response

Av Energy Pitch

0.3324
-0.1107
0.4788
0.7880
0.4659
-0.1459
-0.0029
-0.3768
0.2187
-0.4088
0.4616
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Rises (startand 172-344 Hz 344/689Hz 689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz
ending samples)

1.61 -0.0961 0.1419 0.4166 0.4409 -0.2491 0.0358
70.108 -0.2408 -0.2420 -0.2951 -0.2260 -0.2535 -0.1346
122.141 0.2052 0.0821 0.3584 0.3726 0.4364 0.4661
190.221 -0.1460 0.2412 0.6106 0.4667 0.5207 0.5951
247.261 0.3018 -0.5291 0.0752 0.0703 0.1984 0.4561
269.278 -0.3877 0.5041 -0.1079 0.1944 0.5331 0.1864
294.318 -0.4838 -0.2312 0.1811 -0.2021 -0.1489 0.1532
337.345 -0.3199 -0.4437 -0.9051 -0.3922 -0.7373 -0.8016
377.398 -0.1284 0.3894 0.5474 0.6762 0.1750 0.1031
415.423 0.0553 -0.1245 -0.2575 -0.4389 -0.3558 -0.1828
430.442 -0.5905 -0.6545 -0.2484 0.1112 -0.2626 -0.1307

Table 13: R values for energy band cues (Largo BWV1005) tracking rises in arousal response

Falls (startand MeanDR Notes/s ArtMean ArtSD SndLev SoundDiff  AttVel Av Energy Pitch
ending samples)
76.89 -0.5486 0.4329 -0.2324 0.1130 0.2483 -0.7637 -0.2687 -0.5888 -0.2346

110.122 -0.3450 -0.1628 0.1869 -0.1208 0.8953 -0.0430 0.8420 -0.0111  0.4130
154.187 -0.1673 -0.3328 -0.0369 -0.0356 0.4420 -0.0641  0.1878 0.0287 -0.1127
234.246  0.3941 0.7818 0.2022 -0.4052 0.3087 0.8537  0.9556 0.8234  0.1505
260.269 -0.6003 0.4051 0.1393 -0.0524 -0.6743 -0.2971  -0.8605 0.2235 0.6168
278.291 0.0245 0.3117 0.2281 -0.3184 0.1652 0.6261 -0.5291 0.3099 0.5279
318.337  0.4243 0.7934 -0.1234 0.1351 0.5704 -0.1280  0.7159 0.7351  0.7902
344375 0.0723 0.2748 -0.3534 -0.2941 -0.7079 0.2646 -0.7723 0.0445  0.4542
398.415 -0.2559 0.3618 -0.5106 0.4921 -0.9102 -0.2006 -0.8918 -0.2357 -0.5819
423.430 -0.8087 -0.4513 -0.6779 0.6924 -0.0530 -0.3975  0.6109 -0.5915 0.7880

Table 14: R values for basic cues (Largo BWV 1005) tracking fallsin arousal response

Falls (startand 172-344 Hz 344/689Hz  689/1378Hz 1378/2756Hz 2756/5512Hz 5512/11025Hz
ending samples)

76.89 -0.4303 -0.6747 -0.3285 -0.2753 -0.4402 -0.1944
110.122 0.0068 -0.1936 0.1065 0.1401 0.2963 0.3914
154.187 0.1942 0.0307 0.1573 -0.0355 -0.3914 -0.2532
234.246 0.4767 0.5844 0.7395 0.7854 0.6557 0.7345
260.269 -0.2832 -0.5671 0.4198 0.4015 0.4459 0.6038
278.291 -0.5535 0.2307 0.3664 0.3400 0.4929 0.4603
318.337 0.1807 0.1757 0.6303 0.5381 0.5272 0.5410
344.375 -0.3309 -0.0249 0.0902 0.2419 0.0926 0.0519
398.415 0.4731 -0.0460 -0.2019 -0.2974 -0.1476 -0.1307
423.430 -0.3140 -0.5410 -0.2759 -0.6739 -0.5926 -0.6685

Table 15: R values for energy band cues (Largo BWV1005) tracking fallsin arousal response

By looking at these tables we can try to understand which are the most relevant cues for underlining
arousal effects and then try to use these for extracting rules able to predict arousal changes.

First of al, we should note that the Sound Level Cue is a very important one, as we would have
expected, since it often gets high absolute values in the correlation coefficent. Nonetheless we see
that we had rises marked both by positive values (volume gets louder) but also others marked by
high negative ones (volume gets softer). Thisistrue also for the fals, so the listeners have avoided
the pitfalls of the volume effect problem (i.e. ssmply tracking volume changes).
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In table 16 we see a summary of the previous tables where cues showing significantly high
correlation value (JR| > 0.40) are written in bold:

Cue Rises Falls Rises Falls Total
(BWV1001) |(BWV1001) |(BWV1005) |(BWV1005)

Note DR 2 5 3 4 14
Notes/ s 3 5 5 5 18
Art. M. 1 2 4 2 9
Art SD 0 5 3 3 11
Sound L evel 4 5 8 6 23
Sound Diff. 1 2 1 3 7
Att. Vel. 3 5 9 8 25
Av. Energy 1 4 4 4 13
Pitch 4 4 5 7 20
172-344 Hz 0 1 2 4 7
344-689 Hz 0 2 4 4 10
689-1378 Hz 2 3 4 3 12
1378-2756 Hz 1 4 4 4 13
2756-5512 Hz 1 6 4 6 17
5512-11025Hz 1 6 4 5 16

Table 16: number of times each cue gets a correlation value |R| > 0.40

From this table we see how the most relevant cues for identifying arousal changes are: Notes/s,
Sound Level, Attack Velocity, Pitch and the energy in the 2756-5512Hz band (from now on we will
call this“ Mid Harmonic Energy” ).

These cues data have then been used for generating classification/decision trees following the well
known C4.5 generation and pruning algorithms proposed by Ross Quinlan (Quinlan 1993).

The trees were built by taking cues data during the rises and falls patters underlined previously
(figs. 35 and 36) and our aim is to classify these two categories (for a similar experiment that tries
to classify different kind of rises and fals, see (Marolt et al. 2004)). The overall data set was
divided into two groups. a training one and test one, the latter containing 10% of the original data
randomly choosen. In this way we had, for the Presto, atraining set of 323 vectors (each containing
the values of the five cues underlined in Table 16) and atest set of 36 vectors, while for the Largo
the training set had 348 vectors and the test set 41.

A summary of the trees data and results is shown in the following tables:

Number of Training observations |323 | Number of Predictors 5
Number of Test obervations 36 Class Variable Rise/Fall
Total Number of Nodes 106 | % misclassified

Number of Leaf Nodes 54 On Training Data 4.33%
Number of Levels 20 On Test Data 22.22%

Table 17: Classification Tree Model for Presto BWV 1001

Number of Training observations | 348 | Number of Predictors 5
Number of Test obervations 41 Class Variable Rise/Fall
Total Number of Nodes 150 |% misclassified

Number of Leaf Nodes 56 On Training Data 4.89%
Number of Levels 17 On Test Data 36.59%

Table 18: Classification Tree Model for Largo BWV 1005




While in figures 37 and 38 we see alittle portion of the generated tree:
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Fig. 37: Sample Tree for Presto
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Fig. 38 Sample Tree for Largo

The generated rules try to underline some common aspects found while going through the trees and
are sometimes overlapping and redundand. Among those generated by the system, the most
interesting ones, evaluated by looking at the support (how much of the original data they can be
applied to) and confidence (how much of the data they classify correctly) percentages are presented

in Tables19 and 20.

Rule Support | Confidence
If Notes/s<0.5then RIF=F 1.5% 100%
If Notes/s>=0.5then RIF=R 98.5% |73.8%
If Notes/s>3.0 thenRIF=R 38.3% |87.4%
If SoundLevel >= 0.00968 then R/F = F 12.1% |61.5%
If Sound Level <0.01076then R/IF=R 91.3% 76.3%
If Sound Level >=0.01076 then RIF =F 8.7% 60.7%
If Sound Level <0.00827 then R/F=R 82.4% 78.2%
If Sound Level >=0.00827 then RIF = F 17.6% |50.9%
If MidHarmonicsEnergy < 0.0003889 then R/IF =R 54.2% |76.0%
If MidHarmonicsEnergy >= 0.0009881 then R/F =R 18.0% 72.4%
If AttackVel >=0.01611 AND  MidHarmonicsEnergy < 0.0003167 then RIF=F 2.2% 100%
If AttackVel >=0.01843 then RIF=F 7.1% 79.6%
If AttackVel >=0.01732 then R/F=F 8.0% 65.4%
If AttackVel >=0.00818 then RIF=R 43.3% 67.1%
If AttackVel >=0.00599 then R/F=R 61.3% |72.2%
If Pitch >= 553 then RIF=R 43.7% 79.4%
If Pitch>= 626 then R/F=R 26.5% |77.3%

Table 19: Generated Rules for Arousal prediction in Presto BWV 1001 (R: Rise, F: Fall)




Rule Support | Confidence
If AttackVel < 0.00014 thenR/IF=F 4.0% 64.3%
If AttackVel >= 0.00712 then RIF =R 22.4% |60.3%
If AttackVel >= 0.00055 AND SoundLevel < 0.00075 then R/IF = F 6.9% 95.8%
If AttackVel > 0.00356 AND Pitch >= 601 AND SoundLevel >= 0.00131 then R/F=R 11.2% 87.2%
If SoundLevel >=0.00371 then R/F=R 42.0% 61.6%
If Pitch>=531thenR/IF=R 64.9% 61.5%
If Pitch>=712thenR/F=R 21.3% 64.9%
If Pitch<495thenR/IF=F 25.3% 61.4%
If Pitch<357thenR/IF=F 4.3% 80.0%
If Notes/s<0.333thenR/IF=F 1.2% 100%
If Notes/s < 0.666 then R/F = F 5.2% 61.1%
If Notes/s>=0.666 then R/F=R 94.8% 54.4%
If Notes/s >= 1.666 then R/F = R 37.6% |61.1%
If MidHarmonicsEnergy >= 0.002352 then R/F = R 16.7% |62.1%
If MidHarmonicsEnergy < 0.00001 then R/F = F 10.1% |62.9%

Table 20: Generated Rules for Arousal prediction in Largo BWV 1005 (R: Rise, F: Fall)

As we can see from the results showed in the previous pages, the pruned trees classify quite well
most of the data but have some problems in test sets for correctly identifying the falls which were
often misunderstood as rises, hence the relatively high values shown in tables 16 and 17.

Anyway, when classifying test data, the most important thing to look at is the resulting average
behaviour and, since the training was carried out with only two classes (rise and fall, no “straight”
lines) it is understandable that single vectors can be misclassified.

Regarding the generated rules, it is interesting to see whether they can actually predict the
emotional response of alistener in asimilar piece.

To verify this, we chose the Preludio from the the Partita |11 to test the rules generated previously
and related to a fast piece (table 19), and the first half (repeat included) of the Andante from the
Sonata Il for the rulesrelating to a slow piece (table 20).

The rules were implemented in MatLab and weighted according to their confidence percentage (so
rules with higher confidence have stronger weights) then, by feeding the cues to the MatL ab file,
the system evaluates whether the current vector would provoke a rise or rather a fall in the
emotional response of the listener. In thisway it is able to propose a possible “arousal” profile that,
for the Preludio, is shown in figure 39 (the graph is obtained by adding 1 when most of the rules
predict arise, subtracting 1 when the rules predict afall, doing nothing when thereis atie).

Now we should compare this profile with that of an actual listener and see whether we have
similarities.

Subject three of the previous experiment was hired again and had another session like that
explained at the beginning of this chapter. Hisarousal profile is shown in figure 40.

Both profilesin figures 39 and 40 have been normalized to 1.
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Fig. 39: Arousal profile predicted by the system for Preludio, Partita lll BWV 1006
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Fig. 40: Arousal profile as recorded by subject three for Preludio, Partitalll BWV 1006

As we can see, the two profiles in the above figures show strikingly similarities, with the second

one dlightly delayed due to the response time needed by the subject.
By analysing Ms.BeckerBender performance, we see it starts rather softly and then builds up with a

crescendo following the rising pitch progressions in the fast passages of the score. These are the
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characteristics that were identifyed by the system and that, probably, contributed to move the
subject who was listening to the performance.
Now let us test the rules generated for the slow movements.

The predicted profile is shown in figure 41 while the subject response is shown in figure 42 (both
have been normalized to 1).
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Fig. 41: Arousal profile predicted by the system for Andante (1% Half), Sonata || BWV 1003
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Fig.42: Arousal profile as recorded by subject three for Andante (1% Half), Sonata || BWV 1003

Once more the similarities between the two profiles are striking as both of them have the arousal

peaks in the same positions showing that the expert system, driven by the previously generated
rules, is able to identify the points which are most likely to produce an arousal of emotions in
listeners.
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Looking at the graphs, it is interesting to note that now, having a slow piece, we do not have the
dlight delay between the predicted and the measured profiles we noticed earlier. The reason is
simply that the fast piece evolves very quickly and the reaction time of the subject being measured
is, in that case, enough long to be noticed. This doesn’t happen while measuring the slow movement
where the changes in the music, and hence in the response, have a much lower rate.

It is adso very interesting to compare how the system and the listener faced the repeat of the
movement which was performed by the artist emphasizing different aspects such as dynamics and
articulation patterns.

At the beginning of the repeat the system identifyed only some little spots of possible arousals, but
not enough to bring the emotion measures to a high level as it did during the first time. We should
note that the system has no “memory” of what happened when the music was played for the first
time. The listener, instead, had this knowledge and, as he noted commenting the results after the
experiment, the emotional engagement he felt during the first time influenced and amplified his
measurements during the second listening, adding more involvement and taking him to higher
arousal levels from the very beginning of the repeat.
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Part V

Conclusions and future developments
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5.1 Possible uses of cuesin actual music making

The experiments we discussed so far suggest several possible applications of the audio cuesin red
musical environments.

Most of these applications could also be of interest for commercial products. for example the
arousal prediction system we talked about in the previous chapter could be used to develop a more
complex and flexible system able to predict listeners emotional engagements in particular pieces
and hence it could be used to have predictions about the possible success, i.e. sales, a particular
piece/song will have among a targeted audience (a piece that shows high predicted arousal and well
defined peaksis more likely to be enjoyed and, hence, successful).

Such approach could aso be useful when querying databases. for example selecting pieces whose
emotional profile looks close to that of a given piece, could be areliable way for suggesting other
possible items of interestsin a shopping environment such as Amazon or others.

Experiments such as those presented in the first chapters are instead very interesting to show other
application possibilities that range from interactive performances where a musician plays along
with a computer, modifying the machine behaviour by changing his/her expressive intentions, to a
new conception of teaching tools where a computer listens to the students and then is able to give
comments on the particular performance regarding their style and, eventually, greet the performer
with rewarding comments such as “Well done! Y ou played this Sonata like Glenn Gould!”.

Thanks to the continue advancing of the broad band internet technology, teaching tools of this kind
could even be implemented in remote environments where the students are coached by a computer
system running on a machine located anywhere. A scenario like this would surely bring many
benefits to all music lovers who live far away from music schools and are not able to experience
traditional teaching methods.

Moreover the possibilities that such cues recognition system offers in a very flexible environment
such as the EyesWeb platform should not be forgotten.

EyeswWeb, in fact, gives the artists the possibility of making their own patches where the cues could
be used for identifying particular aspects of their playing to control a desired effect in real time.
Some very basic patches, that could be used as a starting point for developing more complex tools
by advanced users, are presented in Appendix B.

Of course, to achieve these kind of results, a lot of work is still needed to refine the research and
make the systems more general and robust. Anyway the results obtained during the development of
this research are very interesting and promising and show that the audio cues being selected are
really meaningful to objectively describe and quantify several aspects of music playing that, so far,
could only be explained in often ambiguous and subjective words such as those used for describing
style characteristics or particular moods and “ sound colours’ in music playing.
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Appendix A

The EyesWeb Blocks in detail
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BigBuffer

-+

This block implements a FIFO structure for SoundBuffer datatypes.
| nput: SoundBuffer
Output: SoundBuffer

Parameters. Buffer Length (in seconds), Buffer Mode (Normal, Overlapped)

DelayLine

n
—n

This block delays an input SoundBuffer of the amount specified.
| nput: SoundBuffer
Output: SoundBuffer

Parameters. Value (the amount we want the input soundbuffer be delayed of. Its typeis specified
in the following parameter), Type (Samples, Milleseconds)

L ogBuffer

This block computes the logarithm (base 10) of an input SoundBuffer.
| nput: SoundBuffer
Output: SoundBuffer

Parameters: none

52



Norma

.,

This block normalizes an input SoundBuffer.
| nput: SoundBuffer
Output: SoundBuffer

Parameters. Max (the value we want to normalize the input. Usually set to 1)

SoundDiff
[

This block computes basic operations (+, -, *, /) between two input SoundBuffers.

| nput: SoundBufferl, SoundBuffer2
Output: SoundBuffer

Parameters. Operations (+, -, *, /)

Squared

This block squares an input SoundBuffer.
| nput: SoundBuffer
Output: SoundBuffer

Parameters. None
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XLowPass

This block implements the 1% order 1R low pass filter as described in page 9 (equation 2).
| nput: SoundBuffer
Output: SoundBuffer

Parameters. FC (Cut off frequency), N (number of filters to put in cascade)

AudioCues

This block extracts the set of audio cues, time window approach, as described in page 9.
| nput: SoundBufferl, SoundBuffer2

Output: Scalarl (tempo), Scalar2 (standard deviation of articulation), Scalar3 (mean of
articulation), Scalar4 (sound level difference), Scalar5 (mean of sound level), Scalaré (mean of
attack velocity), Scalar7 (tempo2, i.e. notes per second), Scalar8 (standard deviation of sound level)

Parameters. Filename (specifies atext file name where to save the cues. Writing “nofile”, no files
will be written and data will not be saved)



NoteCues

This block extracts a set of audio cues, event triggered approach, as described in page 10.

| nput: SoundBufferl, SoundBuffer2, Scalar

Output: Scalarl (sound level), Scalar2 (sound max), Scalar3 (articulation), Scalar4 (101), Scaars
(attack velocity), Scalar6 (flag for note detection)

Parameters. Filename (specifies atext file name where to save the cues. Writing “nofile”, no files
will be written and data will not be saved), Step (time interval, in ms, for taking samples from the
incoming soundbuffers), Mode (specifiesif the block works having only the energy profiles as
inputs or if it should use also the data from the scalar input for improving note detection)

ACues

This block implements the multidimensional scaling described in page 14.
Input: Scalarl, Scalar2, Scalar3, Scalar4, Scalars, Scalaré
Output: Scalarl (X coordinate), Scalar2 (Y coordinate)

Parameters. Style (specifies the angles to be used during the compression algorithm. So far only
the recorder scheme isimplemented but others can be added), Step (specifies the maximum amount,
in pixels, for moving the cursor in the 2D space)
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SampleToFreq Midi

This block extract the fundamental frequency of an incoming sound by using a zero crossing
algorithm.

| nput: SoundBuffer
Output: Scalar

Parameters. Mode (specifies whether the output should be expressed as frequency in Hz or Midi
value)

Energia

HNRG
Il

This block computes the energy of the incoming soundbuffer giving the user very high flexibility in
defining the frequency bands where the energy will be computed

| nput: SoundBuffer, Matrix (optional, specifies the frequency bands)
Output: Matrix (displays the list of the frequency bands and the energy computed in each of them)

Parameters. DimFFT (FFT Dimension), FileName (the file where the results will be saved),
WriteFile (flag for specifying whether the file with the results should be saved or not), CompactLog
(specifies whether the results should be saved in a short or verbose format), NumBands (number of
frequency bands to split the spectrum in), BandType (specifiesif the spectrum should be divided
linearly, logarithmically or using an input matrix or a separate input text file), OutputBands
(specifies the max number to be displayed in the output matrix)
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Plucked 1 1

This block implements in EyesWeb a physical model of a stringed plucked instrument using the
well known Karplus-Strong Alghorithm (Karplus, Strong 1983) and based on the C++ classes
proposed in the STK (Cook, Scavone 1999).

|nput: Scalarl (frequency), Scalar2 (amplitude)
Output: SoundBuffer

Parameters. LowestFrequency (specifies the lowest possible frequency in Hz)

Sitar 1 1

A variant of the Plucked 1 1 block, thisimplementsin EyesWeb a physical model of asitar
instrument using the Karplus-Strong Alghorithm (Karplus, Strong 1983) and based on the C++
classes proposed in the STK (Cook, Scavone 1999).

|nput: Scalarl (frequency), Scalar2 (amplitude)
Output: SoundBuffer

Parameters. LowestFrequency (specifies the lowest possible frequency in Hz)
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Appendix B

Basic EyesWeb patches for interactive performances
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This appendix shows some possible EyesWeb patches that use the blocks and the ideas explained in
the thesis. These patches can be useful as a starting point to artists or advanced EyesWeb users who
want to start developing their own patches using the cues for controlling particular audio, video or
other special effects for interactive artistic performances.

For semplicity’s sake, a cue extractor patch such as the one shown in figure 4 (page 8) is not
included and the cues, or the output of any elaboration we want to make on them by means of
HMMSs, expert systems or other tools, will be directly connected to the blocks instead of the simple
dliders presented in the following figures.

Tempo
2. ]
Freguency
1
—E Display_2
Co

Display_2

Fig. 43: avery simple patch for controlling in real time the Plucked_1 1 block

In Figure 43 we have a very basic patch that will be used as a starting block for those shown in
figures 44 and 45. Very simply, it can control in real time the frequency, volume and tempo (i.e
time between two following notes) of the note generated by a physical model of a plucked string
instrument (see pag.59).

Figure 44 shows a patch that takes this module and builds a system for generating a random note
among those specified in the scalar-generator blocks. These are inserted in a vector and then
random number generator selects the particular entry. Volume and Tempo can be controlled in real
time by particular cues so to react to particular effects.
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Tempo

rnd= Cisplay_2

L] Display_z

Yolurme

J—

Display_z

Fig.44: apatch that select a note at random among those defined in a vector.

Figure 45 developes the previous patch further: in this case the notes generated by the Plucked
block are coming from a C mgjor scale. The particular note is choosen at random and the cues can
control the tempo, volume and shift the note' s octave.

Figure 46 instead shows a patch where cues can control the low and high cut off frequencies to band
pass a white noise signal (generated by the “rand” signal block).

This can give the opportunity to a performer to play along and control in real time “wind like”
effects during his/her performance.
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J— Tempo |

Displaw_Z Displayw_Z

| Displayw_Z

3 Amplitude
Frequency 3

Frequency in

Displaw_Z

Fig.45: A patch generating notes taken from a C Magjor scale.

Cut Off Frequency 1

i
/
JCut Off Frequency 2

Fig.46: Filtering white noise for particular effects
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